Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns.

نویسندگان

  • S Maury
  • P Geoffroy
  • M Legrand
چکیده

The biosynthesis of lignin monomers involves two methylation steps catalyzed by orthodiphenol-O-methyltransferases: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases (COMTs) and caffeoyl-coenzyme A (CoA)/5-hydroxyferuloyl-CoA 3/5-O-methyltransferases (CCoAOMTs). Two COMT classes (I and II) were already known to occur in tobacco (Nicotiana tabacum) and three distinct CCoAOMT classes have now been characterized. These three CCoAOMT classes displayed a maximum level of expression at different stages of stem development, in accordance with their involvement in the synthesis of lignin guaiacyl units. Expression profiles upon tobacco mosaic virus infection of tobacco leaves revealed a biphasic pattern of induction for COMT I, COMT II, and CCoAOMTs. The different isoforms were expressed in Escherichia coli and our results showed that CCoAOMTs and, more surprisingly, COMTs efficiently methylated hydroxycinnamoyl-CoA esters. COMT I was also active toward 5-hydroxyconiferyl alcohol, indicating that COMT I that catalyzes syringyl unit synthesis in planta may operate at the free acid, CoA ester, or alcohol levels. COMT II that is highly inducible by infection also accepted caffeoyl-CoA as a substrate, thus suggesting a role in ferulate derivative deposition in the walls of infected cells. Tobacco appears to possess an array of O-methyltransferase isoforms with variable efficiency toward the diverse plant o-diphenolic substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification.

The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes i...

متن کامل

Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase.

Caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase (COMT) from alfalfa is an S-adenosyl-L-Met-dependent O-methyltransferase involved in lignin biosynthesis. COMT methylates caffeoyl- and 5-hydroxyferuloyl-containing acids, aldehydes, and alcohols in vitro while displaying a kinetic preference for the alcohols and aldehydes over the free acids. The 2.2-A crystal structure of COMT in comp...

متن کامل

An alternative methylation pathway in lignin biosynthesis in Zinnia.

S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is implicated in disease resistant response, but whether it is involved in lignin biosynthesis is not known. We isolated a cDNA clone for CCoAOMT in differentiating tracheary elements (TEs) induced from Zinnia-isolated mesophyll cells. RNA gel blot analysis showed that the expression of the CCoAOMT gene was marked...

متن کامل

The Structure and Catalytic Mechanism of Sorghum bicolor Caffeoyl-CoA O-Methyltransferase.

Caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase responsible for methylation of the meta-hydroxyl group of caffeoyl-coenzyme A (CoA) on the pathway to monolignols, with their ring methoxylation status characteristic of guaiacyl or syringyl units in lignin. In order to better understand the unique class of type 2 O-methyltransfer...

متن کامل

Identification of the enzymatic active site of tobacco caffeoyl-coenzyme A O-methyltransferase by site-directed mutagenesis.

Animal catechol O-methyltransferases and plant caffeoyl-coenzyme A O-methyltransferases share about 20% sequence identity and display common structural features. The crystallographic structure of rat liver catechol O-methyltransferase was used as a template to construct a homology model for tobacco caffeoyl-coenzyme A O-methyltransferase. Integrating substrate specificity data, the three-dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 121 1  شماره 

صفحات  -

تاریخ انتشار 1999